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Abstract

Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack

opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller

once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for

sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating

the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using

the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric

nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening dis-

placement.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Rosakis et al. (1999, 2000) conducted the first laboratory experiment of ‘‘intersonic shear cracks’’ to

show that the velocity of a shear crack propagating along a weak plane in solid could exceed the Rayleigh

and shear wave speeds, cR and cs, and even approach the dilatational wave speed cd. The brittle polyester

resin was subjected to asymmetric impact in Rosakis et al.�s experiment. The crack rapidly propagated

along the weak plane in the polyester resin and shock waves were clearly observed. Rosakis et al.�s
experiment (1999, 2000) has motivated the recent atomistic simulations (e.g., Abraham and Gao, 2000) and

continuum analyses of intersonic shear crack propagation along weak planes in solids (e.g., Broberg, 1999;
Gao et al., 1999; Huang et al., 1999; Needleman, 1999; Needleman and Rosakis, 1999; Yu and Suo, 2000;

Gao et al., 2001; Geubelle and Kubair, 2001; Huang and Gao, 2001, 2002; Kubair et al., 2002, 2003;

Samudrala et al., 2002a,b). Abraham and Gao (2000) used molecular dynamics (MD) to investigate dy-

namic crack propagation along a weak interface joining two identical solids subjected to shear-dominated
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Fig. 1. A schematic diagram of a triangular lattice structure; the lattice direction is X1; (a) a representative atom and its six nearest-

neighbor atoms; (b) the representative volume (shaded area) of each atom.
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loading. Their simulations showed a finite crack opening displacement (COD) when the crack propagated

at a sub-Rayleigh velocity v < cR. However, once the crack tip velocity exceeded the shear wave speed

(cs < v < cd), the COD became negligible. It is puzzling why the COD for an intersonic crack was negligible
while that for a sub-Rayleigh crack was finite under the same loading.

The finite COD for the sub-Rayleigh crack observed in Abraham and Gao�s (2000) MD simulations is

partially due to the small tensile component they imposed. On the other hand, it is important to note that,

even for a pure shear crack, there is finite COD due to the nonlinearity associated with finite deformation

(Stephenson, 1982). Knowles (1981) and Geubelle and Knauss (1994) obtained the analytic expression of

finite COD for a static shear crack in a nonlinear, generalized Neo-Hookean hyperelastic solid. Recently,

Chen et al. (2004) extended Knowles� (1981) analysis to sub-Rayleigh shear crack propagating along weak

planes in solids, and also found finite COD, which is consistent with Abraham and Gao�s (2000) MD
simulations for sub-Rayleigh crack propagation.

In this paper, we investigate the COD of intersonic cracks propagating along weak planes in solids. We

focus on intersonic shear cracks since it is well established in continuum dynamic fracture mechanics that

tensile (mode-I) cracks cannot propagate at any intersonic speeds (e.g., Freund, 1990; Huang et al., 1999;

Rosakis and Huang, 2003), and both Rosakis et al.�s (1999, 2000) experiments and Abraham and Gao�s
(2000) MD simulations confirm the shear-dominated nature of intersonic cracks. In Section 2, we establish

a nonlinear hyperelasticity theory based on the triangular lattice structure (Fig. 1) and the linear harmonic

potential used in Abraham and Gao�s (2000) MD simulations. We then use the hyperelasticity theory to
study the COD of intersonic shear cracks in Section 3, and show that the intersonic shear cracks have

vanishing COD, which is consistent with the negligible COD in Abraham and Gao�s MD simulations.
2. A nonlinear hyperelasticity theory incorporating the linear harmonic potential

Fig. 1a shows the triangular lattice structure in Abraham and Gao�s MD simulations. The interaction

between atoms was characterized by a linear harmonic potential. A plane-stress constitutive relation is

established in this section from the same triangular lattice structure and linear harmonic potential. The

plane-stress condition is consistent with Abraham and Gao�s (2000) two-dimensional MD simulations of a

single layer of atoms, though the present approach can be straightforwardly extended to plane-strain or
three-dimensional deformation.
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2.1. The linear harmonic potential

The interaction between atoms is characterized by a linear harmonic potential u, which gives the energy

stored in an atomic bond (pair of atoms)
uðlijÞ ¼
1

2
kðlij � l0Þ2; ð1Þ
where k is the linear spring constant, lij is the distance between atoms i and j, and l0 is the equilibrium bond
length. Its derivative ou

olij
¼ kðlij � l0Þ gives the force between atoms i and j, which is linearly proportional to

the stretched bond length lij � l0.

2.2. Deformation of an atomic bond

Let X and x ¼ XþU denote the positions of a material point in the reference (undeformed) and current

(deformed) configurations, respectively, where U is the displacement. The deformation gradient F is given

by
F ¼ Iþ oU

oX
; ð2Þ
where I is the second-order identity tensor. The Green–Lagrange strain E at X is related to the deformation

gradient F ¼ ox
oX

by
E ¼ 1
2
ðFT � F� IÞ; ð3Þ
where FT is the transpose of F.

Let nðnÞ denote the unit vector of the nth bond (n ¼ 1; 2; . . .) at X, and l0 the corresponding equilibrium

bond length in the reference (undeformed) configuration. For the triangular lattice structure in Fig. 1a, each

atom interacts with six nearest-neighbor atoms and the bond directions in the reference (undeformed)

configuration are nð1Þ ¼ �nð4Þ ¼ ð1; 0Þ, nð2Þ ¼ �nð5Þ ¼ ð1
2
;
ffiffi
3

p

2
Þ, and nð3Þ ¼ �nð6Þ ¼ ð� 1

2
;
ffiffi
3

p

2
Þ, where X1 is par-

allel to a bond (Fig. 1). The length of the stretched bond is related to the strain E by
lðnÞ ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nðnÞI EIJn

ðnÞ
J

q
; ð4Þ
or
lð1Þ ¼ lð4Þ ¼ l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E11

p
;

lð2Þ ¼ lð5Þ ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E11

2
þ 3

2
E22 þ

ffiffiffi
3

p

2
ðE12 þ E21Þ

s
;

lð3Þ ¼ lð6Þ ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E11

2
þ 3

2
E22 �

ffiffiffi
3

p

2
ðE12 þ E21Þ

s
:

ð5Þ
2.3. Continuum strain energy density

For the linear harmonic potential (1), the energy stored in the nth bond is uðnÞ ¼ 1
2
k½lðnÞ � l0�2. Based on

the Cauchy–Born rule (e.g., Milstein, 1980; Gao, 1996; Tadmor et al., 1996; Gao and Klein, 1998; Zhang

et al., 2002a,b,c; Huang and Wang, 2003), the continuum strain energy density U can be obtained from the
energy stored in all six atomic bonds at X as
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U ¼ 1

2

P6

n¼1 u
ðnÞ

V
; ð6Þ
where the factor 1/2 results from the equal split of energy between two atoms in each bond, V ¼
ffiffi
3

p

2
l20t0 is the

representative volume for each atom, as illustrated by the shaded area in Fig. 1b, l0 is the equilibrium bond
length prior to deformation, and t0 is the thickness in the out-of-plane direction which does not enter the

continuum theory once the shear modulus is known, as shown in the following.

2.4. The constitutive model based on the linear harmonic potential

The second Piola–Kirchhoff stress S is the work conjugate of the Green–Lagrange strain and it can be

obtained from the strain energy density U by
SIJ ¼
oU
oEIJ

¼ 1ffiffiffi
3

p
t0

X6

n¼1

u0½lðnÞ�
lðnÞ

nðnÞI nðnÞJ ¼ kffiffiffi
3

p
t0

X6

n¼1

lðnÞ � l0
lðnÞ

nðnÞI nðnÞJ :
Its components are
S11 ¼
2kffiffiffi
3

p
t0

3

2

�
� l0
lð1Þ

� l0
4lð2Þ

� l0
4lð3Þ

�
;

S22 ¼
2kffiffiffi
3

p
t0

3

2

�
� 3

4

l0
lð2Þ

� 3

4

l0
lð3Þ

�
;

S12 ¼
2kffiffiffi
3

p
t0

�
ffiffiffi
3

p

4

l0
lð2Þ

þ
ffiffiffi
3

p

4

l0
lð3Þ

" #
;

ð7Þ
where lð1Þ, lð2Þ, and lð3Þ depend on the strain EIJ via (5). Eq. (7) gives a nonlinear, anisotropic stress–strain

relation, even though it is based on the linear harmonic potential. The nonlinearity and anisotropy come

merely from the finite deformation.

For an infinitesimal deformation, jEIJ j << 1, (7) degenerates to the following linear elastic and isotropic
relation,
S11 ¼
3

ffiffiffi
3

p
k

4t0
E11

�
þ 1

3
E22

�
;

S22 ¼
3

ffiffiffi
3

p
k

4t0
E22

�
þ 1

3
E11

�
;

S12 ¼
ffiffiffi
3

p
k

2t0
E12;
which gives the shear modulus l ¼
ffiffi
3

p
k

4t0
, and Poisson�s ratio m ¼ 1

3
. Once the shear modulus l is specified, the

linear spring constant k and thickness t0 do not enter the constitutive relation (7) anymore since the

coefficient 2kffiffi
3

p
t0
in (7) equals 8

3
l. The constitutive relation (7) is also independent of the equilibrium bond

length l0 after proper normalization.

2.5. Equation of motion and boundary conditions

The equation of motion is
ðF � SÞ � r ¼ q0

o2U

ot2
; ð8Þ
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where t is the time, q0 ¼ m
V is the mass density in the reference (undeformed) configuration given in terms of

the atomic mass m and representative volume V for each atom, and r is the gradient operator in the

reference configuration. For a steady-state crack propagation along the X1 direction, the acceleration
o2U
ot2 ¼ v2 o2U

oX2
1

, where v is the crack tip velocity. Eq. (8) becomes
Fig. 2.

deform

linear

and th
ðF � SÞ � r ¼ q0v
2 o

2U

oX2
1

: ð9Þ
The traction-free boundary condition on the crack faces is
ðF � SÞ �N ¼ 0; ð10Þ
where N is the unit normal of the crack faces in the reference (undeformed) configuration.
3. Crack opening displacement of an intersonic shear crack

Knowles (1981) and Geubelle and Knauss (1994) studied the finite COD of a static shear crack in a

nonlinear, generalized Neo-Hookean hyperelastic solid. A semi-infinite crack in an infinite solid was subject

to a remote classical linear elastic KII field. The material surrounding the crack tip was divided into three

regions, as illustrated in Fig. 2. There was an inner region in the immediate vicinity of the crack tip within

which the nonlinear effect dominated and the field was completely different from the classical linear elastic
IIK inter

Finite-Deformation Elastic Field

Linear Elastic Field for an
Intersonic Shear Crack

Finite-Deformation-
Dominating Field

Outer Region

Intermediate Region

Inner Region

A schematic diagram of different zones surrounding the crack tip, including the inner region in which the effect of finite

ation dominates; the intermediate region in which the finite deformation effect is significant and comparable to the classical

elastic asymptotic K inter
II field for an intersonic shear crack; and the outer region where the effect of finite deformation vanishes

e field degenerates to the classical K inter
II field.
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KII field. The inner region was surrounded by an intermediate region within which the nonlinear effect was

significant but not dominant, and the field in the intermediate region was a perturbation to the linear elastic

KII field. The intermediate region was in turn surrounded by an outer region within which the nonlinear

effect was negligible and the field degenerated to the remote classical linear elastic KII field. Knowles (1981)
obtained the analytic solution in the intermediate region, while Geubelle and Knauss (1994) obtained the

solution in the inner region. Both showed finite COD for static shear cracks. Chen et al. (2004) investigated

sub-Rayleigh propagation of a shear crack along a weak plane in a solid characterized by the constitutive

law (7), and they also found finite COD in the intermediate region.

We investigate the possibility of finite COD of an intersonic shear crack propagating with velocity

vð> csÞ along a weak plane in an infinite solid. The solid is characterized by the nonlinear, anisotropic

constitutive relation (7). We follow the same approach as Knowles (1981) and Chen et al. (2004) to divide

the material surrounding the (moving) crack tip into the inner, intermediate, and outer regions (Fig. 2), and
focus on the solution in the intermediate region. The classical linear elastic asymptotic field for an intersonic

shear crack (e.g., Freund, 1990) is imposed as the remote boundary condition.
3.1. Displacement in the outer region: the classical linear elastic asymptotic field for an intersonic shear crack

The solution in the outer region is the classical linear elastic asymptotic field for an intersonic shear

crack. The stress has the singularity 1=rq (e.g., Freund, 1990; Samudrala et al., 2002a,b), where
q ¼ 1

p
tan�1 4âsad

ð1� â2s Þ
2

ð11Þ
is the power of stress singularity, r is the distance to the moving crack tip, âs ¼ ðv2
c2s
� 1Þ1=2 and

ad ¼ ð1� v2

c2
d

Þ1=2 are functions of the crack tip velocity v, and cs and cd ¼
ffiffiffi
3

p
cs are the shear and dilatational

wave speeds, respectively. The power of stress singularity q is always less than 1/2 for intersonic crack

propagation except v ¼
ffiffiffi
2

p
cs at which q ¼ 1=2 such that the intersonic crack tip resumes the conventional

square-root singularity. The classical linear elastic asymptotic field is characterized by an intersonic (shear)

stress intensity factor K inter
II ¼

ffiffiffiffiffiffi
2p

p
rqr12jh¼0 (Samudrala et al., 2002a,b), where r12 is the shear stress, h is the

polar angle measured from the moving crack with h ¼ �p being the crack faces.

The displacements in the asymptotic field have anti-symmetry Urðr; hÞ ¼ �Urðr;�hÞ and

Uhðr; hÞ ¼ Uhðr;�hÞ in polar coordinates ðr; hÞ. The displacements in the upper half plane (06 h6 p) are
given by
Ua ¼
K inter

II

l
r1�qU aðhÞ ða ¼ r; hÞ; ð12Þ
where h ¼ p corresponds to upper crack face, Ur and U h are angular functions given in the following
Ur

U h

� �
¼ cos h sin h

� sin h cos h

� �
U 1

U 2

� �
; ð13Þ
U 1

U 2

� �
¼ 1

4
ffiffiffiffiffiffi
2p

p
ð1� qÞad

2k1�q
d sinð1� qÞhd � ð1� â2s Þ sin qpj cos hþ âs sin hj1�qHðh� hqÞ

2adk
1�q
d cosð1� qÞhd þ 1�â2s

âs
sin qpj cos hþ âs sin hj1�qHðh� hqÞ

8<:
9=; ð14Þ
are angular functions of Cartesian components U1 and U2 of the displacements (Freund, 1990; Samudrala
et al., 2002a,b); hd and kd are functions of polar angle h and crack tip velocity v given by
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hd ¼ tan�1ðad tan hÞ; kd ¼ 1

�
� v2

c2d
sin2 h

�1=2

ð15Þ
and hd ranges from 0 to p. The function H in (14) is the unit step function, which equals unity for hP hq
and 0 for h < hq. It is discontinuous across the shock wave angle hq ¼ p� tan�1 1

âs
, where hq ranges from

p=2 (90�, for v ¼ cs) to p� tan�1 1ffiffi
2

p (144.7�, for v ¼ cd ¼
ffiffiffi
3

p
cs). It is observed that, at the special crack tip

velocity v ¼
ffiffiffi
2

p
cs which gives the conventional square-root singularity q ¼ 1=2 in (11), the shock waves

disappear since the coefficient 1� â2s of the unit step function H in (14) vanishes.

3.2. Jump condition across the shock wave

It can be verified that the displacements in (12) are continuous across the shock wave at h ¼ hq, but the
velocity and stress suffer strong discontinuity for v 6¼

ffiffiffi
2

p
cs.

For a shock wave travelling with velocity vð> csÞ and shock wave angle hq, the jump condition across the

discontinuity (shock wave) is (e.g., Abeyaratne and Knowles, 1990)
q0v sin hqs _Ut� sF � St � eh ¼ 0; ð16Þ
where q0 is the mass density in the reference (undeformed) configuration, _U ¼ oU
ot is the material velocity, F

and S are the deformation gradient and second Piola–Kirchhoff stress, respectively, and eh is the base vector

in the circumferential direction on the shock wave (h ¼ hq). It can be verified that the velocity, deformation

gradient, and stress fields obtained from the displacement in (12) for the classical linear elastic asymptotic

field of an intersonic shear crack satisfy the above jump condition.

3.3. Displacement in the intermediate region

Following Knowles (1981) and Chen et al. (2004), we seek the solution in the intermediate region that

represents a perturbation to the outer-region field in (12), i.e.,
Ur

Uh

� �
¼ K inter

II

l
r1�q UrðhÞ

U hðhÞ

� �
þ r1�p V rðhÞ

V hðhÞ

� �
þ oðr1�pÞ ð17Þ
for large r, where the perturbed terms, on the order of r1�p, result from nonlinearity associated with finite

deformation; the exponent p and angular functions V r and V h are to be determined, and
p > q ð18Þ
in order to ensure that (17) degenerates to (12) as the outer region is approached (r ! 1); oðr1�pÞ in (17)

represents terms that are negligible as compared to r1�p for large r.
The deformation gradient F is obtained straightforwardly by substituting the displacement in (17) into

(2),
Frr
Frh
Fhr
Fhh

8>><>>:
9>>=>>; ¼

1

0

0

1

8>><>>:
9>>=>>;þ K inter

II

lrq

F rrðhÞ
F rhðhÞ
F hrðhÞ
F hhðhÞ

8>><>>:
9>>=>>;þ r�p

1� pV r

V
0
r � V h

1� pV h

V
0
h þ V r

8>>><>>>:
9>>>=>>>;þ oðr�pÞ; ð19Þ
where F rr ¼ ð1� qÞUr, F rh ¼ U
0
r � U h, F hr ¼ ð1� qÞU h, and F hh ¼ U

0
h þ Ur are angular functions of the

deformation gradient F in the classical linear elastic asymptotic field for an intersonic shear crack, U
0
r ¼ dUr

dh
and U

0
h ¼ dUh

dh are obtained from (13); and V
0
r ¼ dV r

dh and V
0
h ¼ dV h

dh . The Green–Lagrange strain E in (3) and

stretched bond lengths lð1Þ, lð2Þ, and lð3Þ in (5) can be similarly expanded in terms of r. In addition to r�q and
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r�p, they involve r�2q terms resulting from FT � F in (3). The second Piola–Kirchhoff stress S is then obtained

from (7) as
Srr ¼
K inter

II

rq
SrrðhÞ þ lr�p V

0
h

h
þ ð4� 3pÞV r

i
þ ðK inter

II Þ2

lr2q
S
FD

rr ðhÞ þ oðr�2q; r�pÞ;

Srh ¼ Shr ¼
K inter

II

rq
SrhðhÞ þ lr�p V

0
r

h
� pV h

i
þ ðK inter

II Þ2

lr2q
S
FD

rh ðhÞ þ oðr�2q; r�pÞ;

Shh ¼
K inter

II

rq
ShhðhÞ þ lr�p 3V

0
h

h
þ ð4� pÞV r

i
þ ðK inter

II Þ2

lr2q
S
FD

hh ðhÞ þ oðr�2q; r�pÞ;

ð20Þ
where the leading, 1
rq terms correspond to the classical linear elastic asymptotic field for an intersonic shear

crack (Freund, 1990), Srr ¼ 3F rr þ F hh, Srh ¼ F rh þ F hr, and Shh ¼ F rr þ 3F hh are the corresponding angular

functions; the 1
r2q terms result from finite deformation [i.e., FT � F in (3)], and S

FD

IJ ðhÞ are the corresponding
angular functions that are known in terms of Ur and U h; and oðr�2q; r�pÞ represents terms that are negligible

as compared to either r�2q or r�p for large r.
For a steady-state intersonic shear crack propagating with velocity vð> csÞ, the acceleration in (9) can be

written in terms of the displacement in (17) as
o2U

ot2
¼ v2

o2U

oX 2
1

¼ v2
K inter

II

r1þq
aðhÞ þ erv2r�p�1

n
� cos2 hpð1� pÞV r þ sin2 h V

00
r

h
� pV r � 2V

0
h

i
þ p sin 2h V

0
r

�
� V h

	o
þ ehv2r�p�1

n
� cos2 hpð1� pÞV h

þ sin2 h V
00
h

h
� pV h þ 2V

0
r

i
þ p sin 2h V

0
h

�
þ V r

	o
þ oðr�p�1Þ; ð21Þ
where the leading, 1
r1þq term corresponds to the linear elastic asymptotic field for an intersonic shear crack,

aðhÞ is the corresponding angular function that is known in terms of Ur and U h; and er and eh are the base

vectors in the moving coordinates. The substitution of deformation gradient (19), second Piola–Kirchhoff

stress (20), and acceleration (21) into the equation of motion (9) yields the following equations for V r and V h,
1

��
� v2

c2s
sin2 h

�
d

dh
� p

v2

c2s
sin 2h

�
V

0
r

�
� V h

	
� 1

�
þ 2p � v2

c2s
sin2 h

�
V

0
h

�
þ V r

	
þ ð1� pÞ 1

�
� 3p þ v2

c2s
ðcos 2h� ð1� pÞ cos2 hÞ

�
V r ¼ rp�2q ðK inter

II Þ2

l2
�frðhÞ þ oð1; rp�2qÞ;

3

��
� v2

c2s
sin2 h

�
d

dh
� p

v2

c2s
sin 2h

�
V

0
h

�
þ V r

	
þ 3

�
� 2p � v2

c2s
sin2 h

�
V

0
r

�
� V h

	
þ ð1� pÞ 3

�
� p þ v2

c2s
ðcos 2h� ð1� pÞ cos2 hÞ

�
V h ¼ rp�2q ðK inter

II Þ2

l2
�fhðhÞ þ oð1; rp�2qÞ;

ð22Þ
where �fr and �fh are the angular functions scaling with
ðK inter

II
Þ2

l2 in the equation of motion due to finite

deformation, and they are known in terms of Ur and U h; �fr and �fh are even and odd functions of h,
respectively; oð1; rp�2qÞ in (22) represent terms that are negligible as compared to unity or rp�2q for large r. It
is observed that the left hand sides of the above equations depend on h while the right hand sides may
depend on r. Its implication will be discussed in the next Section 3.4.
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The crack-face traction-free boundary conditions (10) become
3V
0
h þ ð4� pÞV r ¼ rp�2q ðK inter

II Þ2

l2
ð� � �Þ þ oð1; rp�2qÞ at h ¼ �p;

V
0
r � pV h ¼ rp�2q ðK inter

II Þ2

l2
ð� � �Þ þ oð1; rp�2qÞ at h ¼ �p;

ð23Þ
where (� � �) represent the coefficients that scale with
ðK inter

II
Þ2

l2 , which are known in terms of UrðpÞ, U hðpÞ, U
0
rðpÞ

and U
0
hðpÞ but are not presented here because of their rather long and tedious expressions.
3.4. Vanishing crack opening displacement in the intermediate region

We show in this section that an intersonic shear crack must have a vanishing COD in the intermediate

region. For the exponent p > q as required in (17) for large r, there are four possible combinations of q and
p, as discussed separately in the following.

(i) p > 2q
The terms rp�2q ðK inter

II
Þ2

l2
�fr and rp�2q ðK inter

II
Þ2

l2
�fh on the right hand sides become the dominant terms in (22) for

large r such that V r and V h on the left hand sides of (22) are negligible. Eq. (22) then gives �fr ¼ �fh ¼ 0,

which do not involve the unknown functions V r and V h anymore. Since �fr and �fh are known in terms of Ur

and U h, �fr ¼ �fh ¼ 0 impose additional constraints on the angular functions Ur and U h for all h between 0
and p. It can be verified that such constraints cannot be met. Therefore, p > 2q is not possible.

(ii) p < 2q
The range of p is q < p < 2q. The terms rp�2q ðK inter

II
Þ2

l2
�fr and rp�2q ðK inter

II
Þ2

l2
�fh on the right hand sides of (22)

become negligible for large r, and (22) gives the following linear, homogeneous ordinary differential

equations for V r and V h,
1

��
� v2

c2s
sin2 h

�
d

dh
� p

v2

c2s
sin 2h

�
V

0
r

�
� V h

	
� 1

�
þ 2p � v2

c2s
sin2 h

�
V

0
h

�
þ V r

	
þ ð1� pÞ 1

�
� 3p þ v2

c2s
ðcos 2h� ð1� pÞ cos2 hÞ

�
V r ¼ 0;

3

��
� v2

c2s
sin2 h

�
d

dh
� p

v2

c2s
sin 2h

�
V

0
h

�
þ V r

	
þ 3

�
� 2p � v2

c2s
sin2 h

�
V

0
r

�
� V h

	
þ ð1� pÞ 3

�
� p þ v2

c2s
ðcos 2h� ð1� pÞ cos2 hÞ

�
V h ¼ 0:

ð24Þ
Similarly, the crack-face traction-free boundary conditions (23) become
3V
0
h þ ð4� pÞV r ¼ 0 at h ¼ �p;

V
0
r � pV h ¼ 0 at h ¼ �p;

ð25Þ
which are also linear and homogeneous. Eqs. (24) and (25) have the trivial solution V r ¼ V h ¼ 0, which

gives vanishing COD. The non-trivial solutions of (24) and (25) can be obtained analytically following the

same approach as that for the classical linear elastic asymptotic field of an intersonic shear crack (e.g.,
Freund, 1990). The exponent p serves as the eigenvalue of the homogeneous ordinary differential equations

(24) with homogeneous boundary conditions (25), and its solution is
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p ¼ n
2
þ q; n ¼ 0;�1;�2;�3; . . . ; ð26Þ
where n ¼ 0 (i.e., p ¼ q) corresponds to the classical linear elastic asymptotic field for an intersonic shear

crack (Freund, 1990). It is straightforward to verify that none of the exponents p above satisfy q < p < 2q.
Therefore, p < 2q does not give a finite, non-vanishing COD in the intermediate region.

(iii) p ¼ 2q and q < 1=2
For q < 1=2 (i.e., crack tip velocity v 6¼

ffiffiffi
2

p
cs), there exist shock waves emanating from the intersonic

crack tip. We show in the following that, for p ¼ 2q, the jump condition (16) across the shock wave cannot

be satisfied. The radial component (i.e., along r direction) of the jump condition (16) gives
q0v sin hqs _Urt ¼ sFrrSrh þ FrhShht: ð27Þ
The jump s _Urt can be obtained from (17) and the steady-state condition o
ot ¼ �v o

oX1
as
s _Urt ¼
vK inter

II

lrq
sin hqsU

0
rtþ

v
r2q

sin hqsV
0
rt; ð28Þ
where we have used sUrt ¼ sU ht ¼ sV rt ¼ sV ht ¼ 0 across the shock wave angle h ¼ hq, and p ¼ 2q. The
right hand side of (27) is obtained from (19) and (20) as
sFrrSrh þ FrhShht ¼
K inter

II

rq
sSrhtþ

l
r2q

sV
0
rtþ

ðK inter
II Þ2

lr2q
sS

FD

rh tþ ðK inter
II Þ2

lr2q
sF rrSrh þ F rhShht; ð29Þ
where F rr, F rh, Srh, Shh, and S
FD

rh are angular functions in (19) and (20). The substitution of (28) and (29) into

the jump condition (27) yields the following relation that does not involve V r and V h,
sS
FD

rh þ F rrSrh þ F rhShht ¼ 0: ð30Þ
Since the functions in (30) are known in terms of Ur and U h, the above equation imposes an additional

constraint on Ur and U h, which cannot be satisfied. In fact, using Mathematica, we have expressed (30) as
� 1

2
sin 6hqsU

0
r2tþ gðhqÞsU

0
rt ¼ 0; ð31Þ
where
gðhqÞ ¼ q sin 6hqU hðhqÞ þ ð2� cos 6hqÞU
0
hðhqÞ þ ð4� 2q� q cos 6hqÞUrðhqÞ ð32Þ
is a continuous function of hq because Ur, U h and U
0
h are continuous at h ¼ hq. It can be verified from (13)

and (14) that sU
0
ht ¼ 0 at h ¼ hq, and sU

0
rt and sU

0
r2t have singular jumps on the order of jh� hqj�q

and

jh� hqj�2q
, respectively. For the jump condition (31) to hold, both coefficients sin 6hq and gðhqÞ must vanish

simultaneously. We have verified that there is no hq between p=2 and p that satisfies sin 6hq ¼ gðhqÞ ¼ 0.

Therefore, p ¼ v and q < 1=2 is not possible.

(iv) p ¼ 2q and q ¼ 1=2 (therefore p ¼ 1)
As discussed in Section 3.1, there exists only one crack tip velocity that gives q ¼ 1=2, i.e., v ¼

ffiffiffi
2

p
cs, at

which the shock waves disappear and jump condition (16) is satisfied automatically. At this special crack tip

velocity, bas ¼ 1, ad ¼ 1=
ffiffiffi
3

p
, and the angular functions Ur and U h in (13) become
Ur

U h

� �
¼

ffiffiffiffiffiffi
kd
2p

r
cos h sin h
� sin h cos h

� � ffiffiffi
3

p
sin hd

2

cos hd
2

( )
; ð33Þ
which do not involve any shock wave terms, where hd ¼ tan�1 tan hffiffi
3

p
� 	

, and kd ¼ ð1� 2
3
sin2 hÞ1=2. The dis-

placements in the intermediate region in (17) become
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Ur

Uh

� �
¼ K inter

II

l
r1=2 UrðhÞ

U hðhÞ

� �
þ V rðhÞ

V hðhÞ

� �
þ oð1Þ: ð34Þ
The governing equations (22) for V r and V h become
d

dh
cos 2h V

0
r

�h
� V h

	i
� ð2þ cos 2hÞ V

0
h

�
þ V r

	
¼ ðK inter

II Þ2

l2
�frðhÞ;

d

dh
ð2
h

þ cos 2hÞ V
0
h

�
þ V r

	i
þ cos 2h V

0
r

�
� V h

	
¼ ðK inter

II Þ2

l2
�fhðhÞ;

ð35Þ
where �fr and �fh defined in (22) are evaluated for v ¼
ffiffiffi
2

p
cs, and they are known in terms of the above Ur and

U h in (33). It is observed that (35) are linear, constant coefficient ordinary differential equations with respect

to cos 2hðV 0
r � V hÞ and ð2þ cos 2hÞðV 0

h þ V rÞ. Their general solutions are given by
ð2þ cos 2hÞ V
0
h

�
þ V r

	
¼ C cos hþ D sin hþ ðK inter

II Þ2

l2

Z h

0

�f 0
hðsÞ

h
� �frðsÞ

i
sinðh� sÞds;

cos 2h V
0
r

�
� V h

	
¼ C sin h� D cos hþ ðK inter

II Þ2

l2
�fh �

ðK inter
II Þ2

pl2

Z h

0

�f 0
hðsÞ

h
� �frðsÞ

i
cosðh� sÞds;

ð36Þ
where coefficients C and D are to be determined. For v ¼
ffiffiffi
2

p
cs, the crack-face traction-free boundary

conditions (23) become
V
0
h þ V r ¼ � 1

12p
ðK inter

II Þ2

l2
at h ¼ �p;

V
0
r � V h ¼ 0 at h ¼ �p:

ð37Þ
The comparison of V
0
r � V h in (36) and (37) yields
D ¼ 0; ð38Þ

�fhð�pÞ þ
Z �p

0

�f 0
h

�
� �fr

	
cos sds ¼ 0; ð39Þ
where we have used the fact that �fr and �fh are even and odd functions of h, respectively. It can be verified

that the numerical integration of �fr and �fh indeed satisfy (39) for v ¼
ffiffiffi
2

p
cs. The coefficient C is determined

from V
0
h þ V r in (36) and (37) as
C ¼ ðK inter
II Þ2

l2

1

4p

�
þ
Z p

0

�f 0
h

�
� �fr

	
sin sds

�
¼ 0:089

ðK inter
II Þ2

l2
: ð40Þ
The second equation in (36) then gives
V
0
r � V h ¼

ðK inter
II Þ2

l2

1

cos 2h
�fh

�
þ 0:089 sin h�

Z h

0

�f 0
hðsÞ

h
� �frðsÞ

i
cosðh� sÞds

�
: ð41Þ
Its denominator, cos 2h, vanishes at h ¼ p=4 and 3p=4, while the numerator does not vanish at these two

angles. Therefore, V
0
r � V h are singular at h ¼ p

4
and h ¼ 3p

4
, and have 1

h�p
4
and 1

h�3p
4

singularities, respectively.

The first equation in (36) gives V
0
h þ V r which is well behaved and has no singularities at h ¼ p

4
and h ¼ 3p

4
.

Therefore, the integration of V
0
r � V h and V

0
h þ V r with respect to h gives V r that has logarithmic singu-

larities at h ¼ p
4
and h ¼ 3p

4
, i.e., ln jh� p

4
j and ln jh� 3p

4
j. The discontinuities in Vr both ahead of (h ¼ p

4
) and

behind (h ¼ 3p
4
) the crack tip are not acceptable. Therefore, p ¼ 2q and q ¼ 1

2
is not possible.
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4. Discussion

The analysis in the previous section involves several assumptions and limitations. The implications of

these assumptions and limitations on the conclusion of vanishing crack opening displacement for intersonic
shear cracks are examined in this section. First, the stress in the outer region is on the order of r�q, which

neglects the higher order terms r�q�1; r�q�2; r�q�3; . . . for an intersonic shear crack. This neglect may affect

the field in the intermediate region since the field in the outer region is imposed as the remote boundary

condition for the intermediate region. However, we show in the following that this neglect does not change

the conclusion of vanishing crack opening displacement. It is recalled that the stress in the intermediate

region is composed of three terms, (i) r�q, which is the solution in the outer region; (ii) r�2q, which also

results from the solution in the outer region but is due to the nonlinearity in the constitutive model; and (iii)

r�p. Such a solution only exists for p < 2q as shown in Section 3.3, and the corresponding solution for
p < 2q gives a vanishing crack opening displacement. Since the higher order terms r�q�1; r�q�2; r�q�3; . . . are
less dominant than r�2q, the leading terms in the intermediate region remain the same as r�q, r�2q, r�p even

after the higher order terms are accounted for. Therefore, the crack opening displacement still vanishes in

the intermediate region.

Secondly, the conclusion of vanishing crack opening displacement holds only in the intermediate region,

not in the inner region which is in the immediate vicinity of the crack tip. In fact, we show in the following

that the present constitutive model (7) based on the linear harmonic potential is not even applicable near

the crack tip. This is because the well known crack tip singularity gives large shear strains near the in-
tersonic shear crack tip, which lead to large compression in some bonds (e.g., see (5)). The linear harmonic

potential (1), however, is unsuitable to large compression because it predicts a finite compressive bond force

�kl0 even when the bond is completely ‘‘crushed’’ to a vanishing bond length l ¼ 0. Therefore, the con-

stitutive model (7) based on the linear harmonic potential cannot be used to study the crack tip behavior. A

nonlinear potential (e.g., the Lennard-Jones potential) which displays an infinite compressive bond force at

zero bond length should be used instead.

Lastly, the present analysis neglects a finite dissipative region associated with the intersonic crack tip.

Unlike a stationary or a sub-Rayleigh crack tip which has the conventional square-root singularity, an
intersonic crack tip has a weaker singularity which yields a vanishing crack tip energy release rate unless

there is a finite dissipative region, also known as the cohesive zone, associated with the intersonic crack tip

(e.g., Kubair et al., 2002, 2003; Samudrala et al., 2002a,b). The effect of finite dissipative region is beyond

the scope of the present study. Furthermore, this finite dissipative region is inconsistent with the linear

harmonic potential without a cutoff distance.
5. Concluding remarks

We have extended Knowles� (1981) finite deformation analysis of static shear cracks to intersonic shear
cracks in this paper. The crack tip is surrounded by an inner region, an intermediate region, and an outer

region. A nonlinear and anisotropic constitutive relation is developed from a linear harmonic potential and

a triangular lattice structure shown in Fig. 1. This constitutive relation is then used to study the dis-

placement field in the intermediate region around an intersonic shear crack tip. Unlike the static shear crack

(Knowles, 1981) and sub-Rayleigh dynamic shear crack (Chen et al., 2004) which have finite crack opening

displacement, we have found that the intersonic shear cracks must have vanishing crack opening dis-

placement in the intermediate region. This is consistent with Abraham and Gao�s (2000) molecular

dynamics simulations which showed that, under the same loading, sub-Rayleigh cracks displayed finite
crack opening, while the crack opening of intersonic cracks were negligible.
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