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Abstract

Recent molecular dynamics simulations of dynamic crack propagation have shown that there is a finite crack
opening for a shear crack propagating at a sub-Rayleigh speed, but the crack opening becomes significantly smaller
once the crack tip velocity exceeds the shear wave speed. To understand this difference between the crack opening for
sub-Rayleigh and intersonic shear cracks, we develop in this paper a finite deformation continuum theory incorporating
the linear harmonic potential to describe the deformation of a crack in a solid with triangular lattice structure. Using
the asymptotic method developed by Knowles [Eng. Fract. Mech. 15 (1981) 469], we show that even after the geometric
nonlinearity of finite deformation is accounted for, the intersonic shear cracks have a vanishing crack opening dis-
placement.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Rosakis et al. (1999, 2000) conducted the first laboratory experiment of ““intersonic shear cracks” to
show that the velocity of a shear crack propagating along a weak plane in solid could exceed the Rayleigh
and shear wave speeds, cg and ¢, and even approach the dilatational wave speed cq. The brittle polyester
resin was subjected to asymmetric impact in Rosakis et al.’s experiment. The crack rapidly propagated
along the weak plane in the polyester resin and shock waves were clearly observed. Rosakis et al.’s
experiment (1999, 2000) has motivated the recent atomistic simulations (e.g., Abraham and Gao, 2000) and
continuum analyses of intersonic shear crack propagation along weak planes in solids (e.g., Broberg, 1999;
Gao et al., 1999; Huang et al., 1999; Needleman, 1999; Needleman and Rosakis, 1999; Yu and Suo, 2000;
Gao et al., 2001; Geubelle and Kubair, 2001; Huang and Gao, 2001, 2002; Kubair et al., 2002, 2003;
Samudrala et al., 2002a,b). Abraham and Gao (2000) used molecular dynamics (MD) to investigate dy-
namic crack propagation along a weak interface joining two identical solids subjected to shear-dominated
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Fig. 1. A schematic diagram of a triangular lattice structure; the lattice direction is Xj; (a) a representative atom and its six nearest-
neighbor atoms; (b) the representative volume (shaded area) of each atom.

loading. Their simulations showed a finite crack opening displacement (COD) when the crack propagated
at a sub-Rayleigh velocity v < cg. However, once the crack tip velocity exceeded the shear wave speed
(¢cs < v < ¢q), the COD became negligible. It is puzzling why the COD for an intersonic crack was negligible
while that for a sub-Rayleigh crack was finite under the same loading.

The finite COD for the sub-Rayleigh crack observed in Abraham and Gao’s (2000) MD simulations is
partially due to the small tensile component they imposed. On the other hand, it is important to note that,
even for a pure shear crack, there is finite COD due to the nonlinearity associated with finite deformation
(Stephenson, 1982). Knowles (1981) and Geubelle and Knauss (1994) obtained the analytic expression of
finite COD for a static shear crack in a nonlinear, generalized Neo-Hookean hyperelastic solid. Recently,
Chen et al. (2004) extended Knowles’ (1981) analysis to sub-Rayleigh shear crack propagating along weak
planes in solids, and also found finite COD, which is consistent with Abraham and Gao’s (2000) MD
simulations for sub-Rayleigh crack propagation.

In this paper, we investigate the COD of intersonic cracks propagating along weak planes in solids. We
focus on intersonic shear cracks since it is well established in continuum dynamic fracture mechanics that
tensile (mode-I) cracks cannot propagate at any intersonic speeds (e.g., Freund, 1990; Huang et al., 1999;
Rosakis and Huang, 2003), and both Rosakis et al.’s (1999, 2000) experiments and Abraham and Gao’s
(2000) MD simulations confirm the shear-dominated nature of intersonic cracks. In Section 2, we establish
a nonlinear hyperelasticity theory based on the triangular lattice structure (Fig. 1) and the linear harmonic
potential used in Abraham and Gao’s (2000) MD simulations. We then use the hyperelasticity theory to
study the COD of intersonic shear cracks in Section 3, and show that the intersonic shear cracks have
vanishing COD, which is consistent with the negligible COD in Abraham and Gao’s MD simulations.

2. A nonlinear hyperelasticity theory incorporating the linear harmonic potential

Fig. 1a shows the triangular lattice structure in Abraham and Gao’s MD simulations. The interaction
between atoms was characterized by a linear harmonic potential. A plane-stress constitutive relation is
established in this section from the same triangular lattice structure and linear harmonic potential. The
plane-stress condition is consistent with Abraham and Gao’s (2000) two-dimensional MD simulations of a
single layer of atoms, though the present approach can be straightforwardly extended to plane-strain or
three-dimensional deformation.
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2.1. The linear harmonic potential

The interaction between atoms is characterized by a linear harmonic potential ¢, which gives the energy
stored in an atomic bond (pair of atoms)

(1) = 5Ky ~ o) (1

where £ is the linear spring constant, /;; is the distance between atoms i and j, and /; is the equilibrium bond
length. Its derivative ST‘” = k(Il;; — ly) gives the force between atoms 7 and j, which is linearly proportional to
the stretched bond length /;; — /.

2.2. Deformation of an atomic bond

Let X and x = X 4 U denote the positions of a material point in the reference (undeformed) and current
(deformed) configurations, respectively, where U is the displacement. The deformation gradient F is given
by

ou

F=I+=o, )

where I is the second-order identity tensor. The Green—Lagrange strain E at X is related to the deformation
gradient F = & by

E=!(F .F-1), (3)

where F' is the transpose of F.

Let ¢™ denote the unit vector of the nth bond (n = 1,2, .. .) at X, and [, the corresponding equilibrium
bond length in the reference (undeformed) configuration. For the triangular lattice structure in Fig. 1a, each
atom interacts with six nearest-neighbor atoms and the bond directions in the reference (undeformed)
configuration are ¢V = —¢¥ = (1,0), é? = —¢® = (1 ) and ¢® = —¢© = (—1,3), where X, is par-
allel to a bond (Fig. 1). The length of the stretched bond is related to the strain E by

10 = 1/ 1+ 280 By e, ¥

1M =1® = [\/1 + 2E};,

or

Ey 3 V3

@ — 6 — 1+ 2+ Y2 (E + E

/ ) lo\/—|—2—|—2 22+2(12+ 21), (5)
Ey 3 3

1% =1 = lo\/l Jr%JFEEzz —%_(Eu + Ey).

2.3. Continuum strain energy density

For the linear harmonic potential (1), the energy stored in the nth bond is ¢ = 1k[/") — [,]*. Based on
the Cauchy-Born rule (e.g., Milstein, 1980; Gao, 1996; Tadmor et al., 1996; Gao and Klein, 1998; Zhang
et al., 2002a,b,c; Huang and Wang, 2003), the continuum strain energy density @ can be obtained from the
energy stored in all six atomic bonds at X as
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where the factor 1/2 results from the equal split of energy between two atoms in each bond, V' = ‘/7§ I3t is the
representative volume for each atom, as illustrated by the shaded area in Fig. 1b, /; is the equilibrium bond
length prior to deformation, and ¢, is the thickness in the out-of-plane direction which does not enter the
continuum theory once the shear modulus is known, as shown in the following.

2.4. The constitutive model based on the linear harmonic potential

The second Piola—Kirchhoff stress S is the work conjugate of the Green—Lagrange strain and it can be
obtained from the strain energy density @ by

o0 1 Zﬁ QU] ooy K 26 1" — Iy ) o)
S — — n n — f n n .
Y OEy; /3t pt Q) S V31, p Jo) T <

Its components are

sy= k(3 b b b

TV 12 10 4@ 41<3>]’

Sp= 2k [3 3 b 31

2T B2 410 4z<3>]’ (7)

Sy — 2k V3.1, V3
12 = —— == |
V3 | 4 1@ 40

where [V, I and /¥ depend on the strain E;, via (5). Eq. (7) gives a nonlinear, anisotropic stress—strain
relation, even though it is based on the /inear harmonic potential. The nonlinearity and anisotropy come
merely from the finite deformation.

For an infinitesimal deformation, |E;;| << 1, (7) degenerates to the following linear elastic and isotropic
3V3k
(Ell

relation,
1
Ta, \P T3 )
1
3

3v/3k
Sy =—— <E22 +3E >

S]] == E22
1

)
)

which gives the shear modulus u = %", and Poisson’s ratio v = % Once the shear modulus p is specified, the
linear spring constant £ and thickness 7, do not enter the constitutive relation (7) anymore since the

coeflicient \/Z-T"to in (7) equals %u. The constitutive relation (7) is also independent of the equilibrium bond
length /, after proper normalization.

2.5. Equation of motion and boundary conditions
The equation of motion is

’U
(F )V =por 8)
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where ¢ is the time, p, = % is the mass density in the reference (undeformed) configuration given in terms of
the atomic mass m and representative volume V for each atom, and V is the gradient operator in the

reference configuration. For a steady-state crack propagation along the X, direction, the acceleration
?U _ 23U

= U where v is the crack tip velocity. Eq. (8) becomes
: 1
o*U
F-S) -V =p’'—. 9
(F8)-V = i’ s ©)

The traction-free boundary condition on the crack faces is
(F-S)-N=0, (10)
where N is the unit normal of the crack faces in the reference (undeformed) configuration.

3. Crack opening displacement of an intersonic shear crack

Knowles (1981) and Geubelle and Knauss (1994) studied the finite COD of a static shear crack in a
nonlinear, generalized Neo-Hookean hyperelastic solid. A semi-infinite crack in an infinite solid was subject
to a remote classical linear elastic Ky field. The material surrounding the crack tip was divided into three
regions, as illustrated in Fig. 2. There was an inner region in the immediate vicinity of the crack tip within
which the nonlinear effect dominated and the field was completely different from the classical linear elastic
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Fig. 2. A schematic diagram of different zones surrounding the crack tip, including the inner region in which the effect of finite
deformation dominates; the intermediate region in which the finite deformation effect is significant and comparable to the classical

linear elastic asymptotic Ki™" field for an intersonic shear crack; and the outer region where the effect of finite deformation vanishes
and the field degenerates to the classical KM field.
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Kj field. The inner region was surrounded by an intermediate region within which the nonlinear effect was
significant but not dominant, and the field in the intermediate region was a perturbation to the linear elastic
Kj field. The intermediate region was in turn surrounded by an outer region within which the nonlinear
effect was negligible and the field degenerated to the remote classical linear elastic K7y field. Knowles (1981)
obtained the analytic solution in the intermediate region, while Geubelle and Knauss (1994) obtained the
solution in the inner region. Both showed finite COD for static shear cracks. Chen et al. (2004) investigated
sub-Rayleigh propagation of a shear crack along a weak plane in a solid characterized by the constitutive
law (7), and they also found finite COD in the intermediate region.

We investigate the possibility of finite COD of an intersonic shear crack propagating with velocity
v(> ¢;) along a weak plane in an infinite solid. The solid is characterized by the nonlinear, anisotropic
constitutive relation (7). We follow the same approach as Knowles (1981) and Chen et al. (2004) to divide
the material surrounding the (moving) crack tip into the inner, intermediate, and outer regions (Fig. 2), and
focus on the solution in the intermediate region. The classical linear elastic asymptotic field for an intersonic
shear crack (e.g., Freund, 1990) is imposed as the remote boundary condition.

3.1. Displacement in the outer region: the classical linear elastic asymptotic field for an intersonic shear crack

The solution in the outer region is the classical linear elastic asymptotic field for an intersonic shear
crack. The stress has the singularity 1/# (e.g., Freund, 1990; Samudrala et al., 2002a,b), where

1 1 4&5(1(1

q ntan (l—&g)z (11)
is the power of stress singularity, r is the distance to the moving crack tip, & = (g—l — 1)1/ ? and
og = (1 - Z‘—;)l/ 2 are functions of the crack tip velocity v, and ¢; and ¢g = V3¢, are the shear and dilatational
d
wave speeds, respectively. The power of stress singularity ¢ is always less than 1/2 for intersonic crack
propagation except v = \/2¢, at which ¢ = 1/2 such that the intersonic crack tip resumes the conventional
square-root singularity. The classical linear elastic asymptotic field is characterized by an intersonic (shear)
stress intensity factor Kﬁ“er = \2mr 012]y_o (Samudrala et al., 2002a,b), where o, is the shear stress, 0 is the
polar angle measured from the moving crack with 6 = +x being the crack faces.

The displacements in the asymptotic field have anti-symmetry U,.(r,0) = —-U,(r,—0) and
Up(r,0) = Up(r,—0) in polar coordinates (r, ). The displacements in the upper half plane (0 < 0 < =) are
given by

inter
_ K 11

u

U, ATL0) (o= r,0), (12)

where 0 = corresponds to upper crack face, U, and U, are angular functions given in the following
U | _ CO.SH sin 0 U, ’ (13)
Uy —sinf cos0 U,

{E } B 1 2Ky sin(1 — )0y — (1 — &2) singn| cos 0 + & sin 0] “H(0 — 6,)
Uy | 4v2r(1 — q)ag | 20aky *cos(1 — q)04 + 52 sin gn| cos 0 + & sin 0] *H (0 — 0,)

&3

(14)

are angular functions of Cartesian components U; and U, of the displacements (Freund, 1990; Samudrala
et al., 2002a,b); 64 and k4 are functions of polar angle 6 and crack tip velocity v given by
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) 1/2
04 = tan (agtan0), ky = <1 — z—z sin’ 0> (15)
d

and 04 ranges from 0 to n. The function A in (14) is the unit step function, which equals unity for 0 > 0,
and 0 for 0 < 0,. It is dlscontmuous across the shock wave angle 6, = = — tan™' 1 , where 0, ranges from
n/2 (90°, for v = ¢;) to = — tan™! \lf (144.7°, for v = ¢qg = V/3¢). It is observed that at the spe01a1 crack tip
velocity v = v/2¢, which glves the conventional square-root singularity ¢ = 1/2 in (11), the shock waves
disappear since the coefficient 1 — &2 of the unit step function H in (14) vanishes.

3.2. Jump condition across the shock wave

It can be verified that the displacements in (12) are continuous across the shock wave at 0 = 0,, but the
velocity and stress suffer strong discontinuity for v # v/2¢;.

For a shock wave travelling with velocity v(> ¢,) and shock wave angle 0,, the jump condition across the
discontinuity (shock wave) is (e.g., Abeyaratne and Knowles, 1990)

pousin 0,[U] — [F-S]-ey =0, (16)

where p,, is the mass density in the reference (undeformed) configuration, U= aU is the material velocity, F
and S are the deformation gradient and second Piola—Kirchhoff stress, respectlvely, and ey is the base vector
in the circumferential direction on the shock wave (0 = 0,). It can be verified that the velocity, deformation
gradient, and stress fields obtained from the displacement in (12) for the classical linear elastic asymptotic
field of an intersonic shear crack satisfy the above jump condition.

3.3. Displacement in the intermediate region

Following Knowles (1981) and Chen et al. (2004), we seek the solution in the intermediate region that
represents a perturbation to the outer-region field in (12), i.e.,

{G ="l G} el o o

for large », where the perturbed terms, on the order of '=?, result from nonlinearity associated with finite
deformation; the exponent p and angular functions V', and Vy are to be determined, and

P>q (18)

in order to ensure that (17) degenerates to (12) as the outer region is approached (r — oc); o(r'7?) in (17)
represents terms that are negligible as compared to »' 7 for large r.
The deformation gradient F is obtained straightforwardly by substituting the displacement in (17) into

2.

E, 1 . F,.(0) 1 —pV,

Fol )0 K | F(0) —» V -V —»

£ (=)0 +T”q Fou0) +r 1 —pVe +o(r7), (19)
Fyy 1 FUU(Q) V{) + V

where F,, = (1 —q)U,, F,g = U Uy, Fo. = (1 —q)Uy, and Fgg = U + U, are angular functions of the
deformatlon gradient F in the class1cal hnear elastic asymptotlc field for an intersonic shear crack, U dU’
and U dU“ are obtalned from ( 13) and V dV’ and V dV” . The Green—Lagrange strain E in (3) and
stretched bond lengths /M, /@ and [® in (5) can be 51m11ar1y expanded in terms of . In addition to » 7 and
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7, they involve 7~ terms resulting from F* - F in (3). The second Piola—Kirchhoff stress S is then obtained
from (7) as

Kinter_ - o Kinter 2_
Sy =" S,.,(())+ur’”[V;+(4—3p)V,}+( i) g

#r2q rr

(0) +o(r=2,177),

inter _, (Kli?m)z —FD

S0 =Sy = Irlq S,0(0) + ,ur"’[V,, — p79} + Sy (0) +o(r 2 1P, (20)

pra

(]<inler)2 —FD B B
/2"241 S(/() (9)+O(r 2q,r p)’

inter

S = “L—S(0) + w3V} + (4= p)V, | +

where the leading, . terms correspond to the classical linear elastic asymptotic field for an intersonic shear
crack (Freund, 1990), S,, = 3F,, + Fyy, S,p = F,9 + Fy,., and Spy = F,, + 3Fy are the corresponding angular
functions; the r%, terms result from finite deformation [i.e., F* - F in (3)], and EIFJD(B) are the corresponding
angular functions that are known in terms of U, and Uy; and o(»~%,777) represents terms that are negligible
as compared to either 7~%¢ or 7 for large .

For a steady-state intersonic shear crack propagating with velocity v(> ¢;), the acceleration in (9) can be
written in terms of the displacement in (17) as

PU_ LUKy
or? G rl+a

+ psin 20 (7: - 70) } + eovzr"’"{ — cos’ Op(1 — p)Vy

a(0) + e,vzr*pfl{ — cos’Op(1 — p)V, +sin*0 [T/Ir/ —pV,— 27/0}

+ sin? 9[17;5 Vot 27;} + psin 29(7; +r7r)} Fo(rrh), (21)

where the leading, r%ﬂ, term corresponds to the linear elastic asymptotic field for an intersonic shear crack,
a(0) is the corresponding angular function that is known in terms of U, and Uy; and e, and e, are the base
vectors in the moving coordinates. The substitution of deformation gradient (19), second Piola—Kirchhoff
stress (20), and acceleration (21) into the equation of motion (9) yields the following equations for 7, and 7,

2 2 2
vt o) d vt - = v ., =
Kl —gsm 0)(1t9_p02 sm20] (Vr— V0> - <1+2p—czsm 0) (V0+ V,)

S N

2 inter2

+(1—p) {1 - 3p+v—2(cos 20 — (1 — p) cos? 9)] V,= r”*z"@ﬂ(ﬁ) +o(1,777%),

c
v d sz v? ' (22)
2 . 5 - .2 — —
{(3 = sin 0) a0 pc§ sin 20] (VH + V,) + (3 2p o sin 8) (Vr V9>

v’ N 2 Iillmr)2 7 2

+(1-p) {3 —p+c—2(00520 — (1= p)cos 9)] Vo=r"% 2 So(0) + o(1,777%7),

inter )2

where £, and f, are the angular functions scaling with (K‘:T in the equation of motion due to finite

deformation, and they are known in terms of U, and Upy; f, and fy are even and odd functions of 0,
respectively; o(1,7772) in (22) represent terms that are negligible as compared to unity or 7~ for large r. It
is observed that the left hand sides of the above equations depend on 0 while the right hand sides may
depend on r. Its implication will be discussed in the next Section 3.4.
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The crack-face traction-free boundary conditions (10) become

_, o Kinter)2
Wy+@G-pV.= r””q#(- )+ o(l,P) at 0=+,
u
23
— _ ( imer)2 ( )
V,=pVo= r‘”"i—z(- )4 o(1,”P7%) at 0 = =+n,

mlcr ] =/

which are known in terms of U, (n), Uy(n), U,(r)
and U 9( ) but are not presented here because of the1r rather long and tedious expressions.

where (- - -) represent the coefficients that scale with *

3.4. Vanishing crack opening displacement in the intermediate region

We show in this section that an intersonic shear crack must have a vanishing COD in the intermediate
region. For the exponent p > ¢ as required in (17) for large r, there are four possible combinations of ¢ and
p, as discussed separately in the following.

(i) p>2q s -

The terms P~27 =1L~ (&] f and - 2 (K" “ fg on the right hand sides become the dominant terms in (22) for
large » such that V, and Vy on the left hand sides of (22) are negligible. Eq. (22) then gives f, = fp = 0,
which do not involve the unknown functions ¥, and 7, anymore. Since f; and fj are known in terms of U,
and Uy, f, = fy = 0 impose additional constraints on the angular functions U, and U, for all 0 between 0
and . It can be verified that such constraints cannot be met. Therefore, p > 24 is not possible.

(i) p < 2q - -

The range of p is ¢ < p < 2¢. The terms 172 I;I f and -2 'L f9 on the right hand sides of (22)
become negligible for large », and (22) gives the following linear, homogeneous ordinary differential
equations for 7, and V7,

[(1 zz sin (9) dd() p 2s1n20} (17:—70>— (1+2p—c—sm 0)( +7)

N S

UZ
+(1—p)[1—3p+—2
C

N

(c0s20 — (1 — p) cos? 0)} vV, =0,

(24)
v’ d v? — = v .2 = =
{(3 &z — sin 0) W Pa sm20} (V(, + V,) + (3 —2p _c_f sin 9) (Vr — V())
2 —
+(1-p) [3 p + 5(c0s20 — (1 - p) cos? 0)} Vy=0.
Similarly, the crack-face traction-free boundary conditions (23) become
W, +(4—p)V,=0 at0=-+n, 25)

V.—pVy=0 at0==n,

which are also linear and homogeneous. Eqgs. (24) and (25) have the trivial solution ¥, = ¥, = 0, which
gives vanishing COD. The non-trivial solutions of (24) and (25) can be obtained analytically following the
same approach as that for the classical linear elastic asymptotic field of an intersonic shear crack (e.g.,
Freund, 1990). The exponent p serves as the eigenvalue of the homogeneous ordinary differential equations
(24) with homogeneous boundary conditions (25), and its solution is
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p:§+q7 n=0,%1,4£24£3,..., (26)

where n = 0 (i.e., p = ¢) corresponds to the classical linear elastic asymptotic field for an intersonic shear
crack (Freund, 1990). It is straightforward to verify that none of the exponents p above satisfy g < p < 2g.
Therefore, p < 2¢ does not give a finite, non-vanishing COD in the intermediate region.

(iii) p=2q and ¢ < 1/2

For ¢ < 1/2 (i.e., crack tip velocity v # v/2c;), there exist shock waves emanating from the intersonic
crack tip. We show in the following that, for p = 2¢, the jump condition (16) across the shock wave cannot
be satisfied. The radial component (i.e., along r direction) of the jump condition (16) gives

povsin 0,[U,] = [F,Swo + FoSe].- (27)
The jump [U,] can be obtained from (17) and the steady-state condition —v% as
KlIltCl'
[U,] =—"—sin0,[U.] t , sin 0,[7V.], (28)

where we have used [U,]| = [U,] = [V,] = [Vy] = 0 across the shock wave angle 0 = 0,, and p = 2q. The
right hand side of (27) is obtained from (19) and (20) as

Kmter Kmler
[Sr()]"" [[V]+( 11 )

0] 4 (K

o )T
BT+
where F,,, F,q, S0, Sgo, and grg are angular functions in (19) and (20). The substitution of (28) and (29) into
the jump condition (27) yields the following relation that does not involve V, and V,

[[F;rSrU + F;()S()()] = [[F;rSr() + F US()U] (29)

—FD — — _ —
[S, +F.Swo+FoSe] =0. (30)

Since the functions in (30) are known in terms of U, and Uj, the above equation imposes an additional
constraint on U, and U,, which cannot be satisfied. In fact, using Mathematica, we have expressed (30) as

1. — —
—5 sin 60,[U.2] +g(6,)[U,] =0, (31)
where
2(0,) = ¢sin60,Uy(0,) + (2 — cos 60,)U,(0,) + (4 — 2g — gcos 60,)T,(0,) (32)
is a continuous function of 0, because U,, Uy and U, are continuous at 0 = 0,. It can be verified from (13)
and (14) that [U,] = 0 at 6 = 6,, and [U.] and [U.2] have singular jumps on the order of |0 — 0,| ¢ and
|0 — 9q|_2q, respectively. For the jump condition (31) to hold, both coefficients sin 60, and g(0,) must vanish
simultaneously. We have verified that there is no 6, between n/2 and = that satisfies sin 66, = g(6,) = 0.
Therefore, p = v and ¢ < 1/2 is not possible.
(iv) p = 2¢q and g = 1/2 (therefore p = 1)
As discussed in Section 3.1, there exists only one crack tip velocity that gives ¢ = 1/2, i.e., v = V2, at

which the shock waves disappear and jump condition (16) is satisfied automatically. At this special crack tip
velocity, & =1, 09 =1/ V3, and the angular functions U, and Uy in (13) become

U\ _ [kaf cosO sin0) | V3sin% (33)
Uy [ V2r| —sin0 cos0 cos%d ’
which do not involve any shock wave terms, where 04 = tan~! (“\‘}‘.") and kg = (1 —3 sin’ 0)"/2. The dis-
placements in the intermediate region in (17) become
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{5} =TT ot (34)

The governing equations (22) for 7, and ¥, become

;0 [cos20(7, ~72)] - 2.+ cos20) (7 4 7,) = (K)f( 0 .
T {(2 + cos 20) <7;, + 7,)} + cos 20(7: - 170) = (Kl%fo(@)’

where f, and f; defined in (22) are evaluated for v = v/2¢,, and they are known in terms of the above U, and
Uy in (33). It is observed that (35) are linear, constant coefficient ordinary differential equations with respect
to cos 20(V. — V) and (2 + cos 20)(V, + V,). Their general solutions are given by

(2 4 cos20) (7;—1—7,.) = Ccos9+Dsin9+(KIE;)2 /6 D( )= fi(z )} sin(0 — 1) dr,
7o BB T i)~ )] eosto -y,

where coefficients C and D are to be determined. For v = /2¢,, the crack-face traction-free boundary
conditions (23) become

(36)

inter ) 2

cosZ@(V’r —79) = CsinB—Dcos(9+( 1L

1 (]<inter)2
Vot V,=—— L t0==+
+ 2n @ ° T (37)

7:,—?():0 at 0 = +m.

The comparison of V. — 7, in (36) and (37) yields
D=0, (38)

Fo(xn) + /0 - (’; —];) costdr = 0, (39)

where we have used the fact that Zr and fg are even and odd functions of 6, respectively. It can be verified
that the numerical integration of £, and f; indeed satisfy (39) for v = v/2¢,. The coefficient C is determined
from 7, + V, in (36) and (37) as

_(Kpey [ _ 0,080 K’
C=" / (9 f,) sinzde| = 00891~ (40)
The second equation in (36) then gives
Y 1 | / ,
V= Vo=t g+ 0089sin0 — | [0() 7z )} cos(0 — 7)de b. (41)

Its denominator, cos 26, vanishes at 0 = n/4 and 37 /4, while the numerator does not vanish at these two

angles. Therefore, 7/ Vg are singular at 0 = § and 6 = 3, L singularities, respectively.
ry
37{

The first equation in (36) gives V + 7. Wthh is well behaved and has no smgularltles at0=%and 0 =7
Therefore, the 1ntegrat10n of V — V4 and Vo +7, w1th respect to 0 gives V, that has logarlthmlc smgu-
larities at 0 = § and 0 = <, i.e., In |6 — 2] and In |0 — 37 |. The discontinuities in ¥, both ahead of (f = %) and
behind (6 = 34—") the crack tip are not acceptable. Therefore, p=2qgand g = % is not possible.
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4. Discussion

The analysis in the previous section involves several assumptions and limitations. The implications of
these assumptions and limitations on the conclusion of vanishing crack opening displacement for intersonic
shear cracks are examined in this section. First, the stress in the outer region is on the order of 9, which
neglects the higher order terms »—9-!' =972 »=9=3 ___for an intersonic shear crack. This neglect may affect
the field in the intermediate region since the field in the outer region is imposed as the remote boundary
condition for the intermediate region. However, we show in the following that this neglect does not change
the conclusion of vanishing crack opening displacement. It is recalled that the stress in the intermediate
region is composed of three terms, (i) ¢, which is the solution in the outer region; (ii) »~%¢, which also
results from the solution in the outer region but is due to the nonlinearity in the constitutive model; and (iii)
r~?. Such a solution only exists for p < 2¢ as shown in Section 3.3, and the corresponding solution for
p < 2q gives a vanishing crack opening displacement. Since the higher order terms 97!, =472 =473 . are
less dominant than 7%, the leading terms in the intermediate region remain the same as =9, »~29, ¥ even
after the higher order terms are accounted for. Therefore, the crack opening displacement still vanishes in
the intermediate region.

Secondly, the conclusion of vanishing crack opening displacement holds only in the intermediate region,
not in the inner region which is in the immediate vicinity of the crack tip. In fact, we show in the following
that the present constitutive model (7) based on the linear harmonic potential is not even applicable near
the crack tip. This is because the well known crack tip singularity gives large shear strains near the in-
tersonic shear crack tip, which lead to large compression in some bonds (e.g., see (5)). The linear harmonic
potential (1), however, is unsuitable to large compression because it predicts a finite compressive bond force
—kly even when the bond is completely “crushed” to a vanishing bond length / = 0. Therefore, the con-
stitutive model (7) based on the linear harmonic potential cannot be used to study the crack tip behavior. A
nonlinear potential (e.g., the Lennard-Jones potential) which displays an infinite compressive bond force at
zero bond length should be used instead.

Lastly, the present analysis neglects a finite dissipative region associated with the intersonic crack tip.
Unlike a stationary or a sub-Rayleigh crack tip which has the conventional square-root singularity, an
intersonic crack tip has a weaker singularity which yields a vanishing crack tip energy release rate unless
there is a finite dissipative region, also known as the cohesive zone, associated with the intersonic crack tip
(e.g., Kubair et al., 2002, 2003; Samudrala et al., 2002a,b). The effect of finite dissipative region is beyond
the scope of the present study. Furthermore, this finite dissipative region is inconsistent with the linear
harmonic potential without a cutoff distance.

5. Concluding remarks

We have extended Knowles’ (1981) finite deformation analysis of static shear cracks to intersonic shear
cracks in this paper. The crack tip is surrounded by an inner region, an intermediate region, and an outer
region. A nonlinear and anisotropic constitutive relation is developed from a linear harmonic potential and
a triangular lattice structure shown in Fig. 1. This constitutive relation is then used to study the dis-
placement field in the intermediate region around an intersonic shear crack tip. Unlike the static shear crack
(Knowles, 1981) and sub-Rayleigh dynamic shear crack (Chen et al., 2004) which have finite crack opening
displacement, we have found that the intersonic shear cracks must have vanishing crack opening dis-
placement in the intermediate region. This is consistent with Abraham and Gao’s (2000) molecular
dynamics simulations which showed that, under the same loading, sub-Rayleigh cracks displayed finite
crack opening, while the crack opening of intersonic cracks were negligible.
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